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Figure 1: ChoreoCraft addresses three primary challenges in the traditional choreographic process. (Case 1) Choreographers
often forget their compositions during the choreographic process. Our system establishes a VR choreography creation environ-
ment and provides a snapshot function to review and build upon created choreographies. (Case 2) Choreographers frequently
encounter creative plateaus during the composition process. We propose a choreography suggestion system that suggests
choreographies based on musical and motion similarity. (Case 3) Choreographers typically depend on abstract feedback on
their creations, so we come up with a choreography analysis system to provide kinematic feature-based quantitative feedback.

Abstract
Choreographers face increasing pressure to create content rapidly,
driven by growing demand in social media, entertainment, and
commercial sectors, often compromising creativity. This study in-
troduces ChoreoCraft, a novel in-situ virtual reality (VR) choreo-
graphic system designed to enhance the creation process of chore-
ography. Through contextual inquiries with professional choreog-
raphers, we identified key challenges such as memory dependency,
creative plateaus, and abstract feedback to formulate design im-
plications. Then, we propose a VR choreography creation system
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embedded with a context-aware choreography suggestion system
and a choreography analysis system, all grounded in choreogra-
phers’ creative processes and mental models. Our study results
demonstrated that ChoreoCraft fosters creativity, reduces mem-
ory dependency, and improves efficiency in choreography creation.
Participants reported high satisfaction with the system’s ability to
overcome creative plateaus and provide objective feedback. Our
work advances creativity support tools by providing digital assis-
tance in dance composition that values artistic autonomy while
fostering innovation and efficiency.
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1 Introduction
In recent years, the choreography industry has experienced growing
demands for rapid content creation, particularly in the commercial
sector [76] with a surge in dance challenge content on social media
platforms [41] and rising demand for dance tutorials from dance
learners [89]. These environments require professional choreogra-
phers to deliver original and creative movements in a shorter time
period [82, 95]. This leads to limited exploration and refinement
opportunities to craft choreography. Therefore, there is a need for
interactive choreography tools to streamline choreography cre-
ation while maintaining artistic integrity. We propose a novel tool
that enables choreography suggestion and analysis to enhance the
existing choreographic creation process.

Several studies have enhanced the choreographic process with
tools to facilitate ideation and prototyping [18, 46]. These studies
focused on creative plateaus [46], which refer to the hardship of
generating new movements or breaking free from repetitive pat-
terns. These plateaus often come from mental fatigue to deal with
complex spatial and temporal elements [17, 83]. Recent research
proposed systems that created whole dance motion sequences based
on audio input [78, 88]. In our work, we further enhance the chore-
ographic process by introducing a motion suggestion system that
takes care of both users’ motion input and audio features. This
allows choreographers to obtain more relative motion suggestions
geared toward their artistic goals.

On the other hand, feedback is a critical element in refining
and finalizing choreography. Although post-performance analy-
sis or peer feedback has been commonly used, choreographers
often rely on subjective intuition or abstract evaluations from col-
leagues [84]. This indicates there is a lack of systematic feedback
for the current choreography creation process. To this end, pre-
vious works explored objective and data-driven approaches for
analyzing dance motion through motion capture and computa-
tional techniques [26, 81]. Aligning with this trend, we employ a
motion analysis tool that supports a systematic understanding of
choreographers’ movements which are used to provide objective
feedback.

Among various interface types, the virtual reality (VR) interface
has a high potential to provide seamless and uninterrupted work-
flow [27]. This leads users to easily carry out tasks in-situ with
high task performance [7, 92]. Moreover, VR removes spatial and
temporal limitations where choreographers do not need to work
in a traditional studio to carry out the creative process. Thus, we
implemented our tools in VR to better support the creative process.
Moreover, VR allows users to view and refine movements from
multiple perspectives in real-time to support spatial visualization
features. These facilitate an intuitive understanding of their body
balance and foster an immersive choreography creation process.
This enables users to observe and refine their movements from

multiple perspectives, breaking free from the spatial limitations of
physical environments.

In this work, we propose ChoreoCraft, a VR choreography sup-
port tool that integrates avatar interactions, a choreography sug-
gestion system, and a choreography analysis system. To the best
of our knowledge, this is the first study to propose an interface
that supports the choreographic creation process in-situ, without
interrupting the creative flow, among the existing choreography
support tools. Through an exploratory study, we found that chore-
ographers gradually build their choreographies—a process we refer
to as layering—and rely heavily on memory to retain their created
choreographies. They often face creative plateaus and depend on
abstract feedback. Our approach integrates VR technology into the
choreographic workflow, providing an immersive environment for
creative expression utilizing avatar interaction and a snapshot func-
tion to resolve memory dependency. We propose a choreography
suggestion system, which reflects motion similarity and musical
harmony to generate context-aware choreography motions. Within
the system, we propose DanceDTW, a dynamic time warping-based
algorithm specifically tailored to analyze motion similarity in the
dance domain. DanceDTW ensures robustness against variations
in dancers’ physical characteristics and recording conditions. Fur-
thermore, we introduce a choreography analysis system that quan-
titatively evaluates critical kinematic metrics, including motion
stability, equability, and engagement.

Our key contributions are as follows:

• We developed a choreography crafting VR platform to re-
solve memory dependence and stimulate creativity for the
choreographic creation process.
• We introduced a context-aware choreography suggestion
system that incorporates multimodal inputs (music & prior
motions) with DanceDTW to ensure smooth choreographic
connections.
• We developed a kinematic-based analysis system to provide
objective feedback for choreographic movements.
• We conducted user studies with expert choreographers to
validate ChoreoCraft as a creative support tool.

2 Related Work
2.1 Supporting the Choreographic Process
The choreography creation process is an intensively challenging
and iterative one that requires creativity and a structured workflow.
Felice et al. [17] conducted an ethnographic study to categorize
this process into four stages: Preparation: This stage involves con-
ceptualizing the choreography and using tools to prototype ideas
such as sketching. Studio: Choreographers express their conceptual
ideas through physical movement, utilizing various choreographic
materials and engaging in interactions with fellow choreographers.
Performance: This stage represents the live performance, where
the prepared choreography is executed for an audience. Reflection:
Choreographers identify areas for improvement based on obser-
vations from the studio or performance stages, leading to further
development and refinement of the choreography.

Choreographers carry out preparation, studio, and reflection stages
consecutively before the first performance (hereafter referred to as

https://doi.org/10.1145/3706598.3714220
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‘premiere’ according to [17]). In this study, we focused on enhanc-
ing these three consecutive stages. Previous research has explored
various methods to support these stages. For example, visualiza-
tion techniques [28, 36, 52, 61] and interactive tools [8, 18] have
been employed during the preparation stage to help choreographers
ideate and prototype choreography. For the studio stage, interactive
technologies have been utilized to assist in the physical expres-
sion of movement, with tools that facilitate collaboration with
robots [31, 38], drones [24, 25], wall displays [77], and wearable
suits [40, 43]. Additionally, there have been attempts to stimu-
late creativity through various visualization methods [25, 36, 61]
and support the annotation process [12, 69]. Moreover, supportive
systems for dance feedback have been developed to help chore-
ographers analyze and refine their work for the reflection stage.
Typically, this reflection is performed by observing self-recorded
dance videos or discussing improvement directions with fellow
choreographers. Previous research has primarily provided abstract
feedback based on Laban Movement Analysis or complexity analy-
sis [26, 57, 81]. Additionally, Singh et al. [69] and Carlson et al. [12]
developed systems to support choreography creation by enabling
dancers to self-reflect by viewing, evaluating, and improving their
choreographic works within the system.

Our study builds on these efforts by addressing the need for a
more integrated approach to supporting the preparation, studio, and
reflection stages. We propose a system that enhances the choreo-
graphic process in VR environment, allowing choreographers to
maintain a continuous and immersive creative flow. This system not
only supports ideation and prototyping but also facilitates real-time
feedback and iterative refinement, thereby improving the overall
efficiency and creativity of the choreography creation process.

2.2 Dance Motion Creation and Suggestions for
Choreography

The integration of algorithmic assistance in the choreographic pro-
cess has been a topic of recent research, with a focus on generat-
ing dance motions through various input modalities such as mu-
sic [2, 48, 78, 88, 90, 94], music &motion [30, 45, 71, 72, 74, 80], music
& text [32], video [13], motion & text [46]. These algorithms can
serve as catalysts for generating diverse motions during the ideation
stage. Existing dance motion generation algorithms use evaluation
metrics such as fidelity (comparison with ground truth, natural-
ness, physical plausibility), diversity (intra-motion, inter-motion),
condition consistency (text-motion, audio-motion, scene-motion),
and user study (subjective evaluation: preference, rating) [93]. Eval-
uations should be based on indicators from the decision-making
process that dancers undergo when incorporating generated chore-
ography into their actual creative process. This study proposes
evaluation criteria that establish choreographers’ mental models
while creating new choreography and assist in the ideation pro-
cess. Additionally, by conducting a study utilizing these criteria,
we compared and evaluated the performance of several currently
prominent algorithms. Liu & Sra [46] leveraged the dance mo-
tion generation algorithm and designed a system capable of dance
motion generation and modification, as well as prototyping and
documentation. However, it has limitations in synchronous usage
with the choreography creation and supporting systems. Our sys-
tem aims to build a choreography suggestion system that reflects

choreographers’ mental models within the VR environment, en-
abling repetitive prototyping and 3D documentation. Moreover,
by using this system during the choreography creation process,
choreographers can receive "in-process" support.

2.3 VR-based Creativity Support Tool
VR has emerged as a promising medium for creativity support
tools (CSTs) across various creative disciplines. These tools en-
hance user creativity and productivity by providing immersive,
spatially unrestricted workspaces where users can interact with 3D
objects and ideas in real-time [16, 44]. VR-based CSTs have been
successfully applied in fields such as storytelling [86, 91], anima-
tion crafting [92], drawing [22, 75], fashion design [37], enabling
users to explore new creative possibilities and refine their work
with greater flexibility. In the domain of dance, VR-based tools have
been primarily explored in educational and entertainment contexts.
For example, VR has been used to teach dance by providing virtual
instructors and detailed visualizations of dance moves, allowing
students to practice in an immersive and risk-free environment
[4, 42, 66]. Additionally, VR dance games [19, 33] have gained popu-
larity for their ability to combine physical activity with interactive
entertainment, offering users an engaging way to participate in
dance routines [59, 62].

However, the potential of VR as a creativity support tool in the
choreographic process still needs to be explored. While there have
been some advancements in using VR for creating avatar anima-
tions and other creative tasks [92], the application of VR to support
the entire choreographic process—encompassing ideation, proto-
typing, and refinement—has yet to be fully realized. The immersive
nature of VR presents unique opportunities to enhance the choreo-
graphic process by enabling choreographers to visualize complex
movements in real-time, experiment with new ideas in a 3D space,
and receive immediate feedback on their creations. Our research
seeks to explore and expand the potential of VR-based CST in the
choreographic process.

3 Exploratory Study: Understanding Challenges
for Choreographers’ Creative Process

To clearly define the purpose and detailed design of a tool that as-
sists in choreography creation, we conducted an exploratory study
on the choreography creation process. We aimed to investigate
choreographers’ experiences including thoughts, actions, and emo-
tions during the creation of solo dance pieces, and to identify the
main challenges and requirements they face in the choreographic
process. We conducted semi-structured interviews and contextual
inquiries [6] to establish user-centered design implications for sup-
porting the choreography creation in a VR environment.

3.1 Participants
We conducted the study with 8 choreographers (3 female) with
varying levels of choreographic experience (2∼14 years, 𝜇 = 6.25,
𝜎 = 4.71). Specific demographic details are provided in the table 1.
The choreographers participated in the study as consultants and
were compensated with 50 USD. The study was approved under
the IRB protocols.
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Table 1: Demographic and Background Information of Participants in the Contextual Inquiry

Participants Gender Choreographic Experiences Selected Song (Artists) Length of Creation

P1 M 13 years Poppin’ (Chris Brown, 2005) 50 minutes (eight 8-counts)
P2 F 2 years Say It. (Ebz the Artist, 2018) 50 minutes (eight 8-counts)
P3 M 3 years Trip (Ella Mai, 2018) 30 minutes (eight 8-counts)
P4 F 2 years SG (DJ Snake, 2022) 50 minutes (eight 8-counts)
P5 M 14 years Savage Love (BTS, 2020) 23 minutes (eight 8-counts)
P6 F 5 years MACARONI CHEESE (YOUNG POSSE, 2023) 33 minutes (eight 8-counts)
P7 M 5 years Magnetic (R&B ver.) (Aaron Young, 2024) 63 minutes (four 8-counts)
P8 M 6 years Come True (Summer Walker, 2019) 53 minutes (six 8-counts)

3.2 Procedure and Analysis
We conducted a 90-minute study in a dance studio. The study con-
sisted of Introduction, Pre-Interview, Contextual Inquiry (Observation
& Interview), and Post-Interview phases. During the Introduction,
we provided information about the purpose and procedure of the
interview. The Pre-Interview aimed to explore the Ideation and Pro-
totyping stages within the choreography creation process [17]. Dur-
ing the Contextual Inquiry, we observed the participants and asked
questions while they created at least four 8-counts of the choreog-
raphy. We refrained from giving additional instructions beyond the
request to observe the participants’ natural choreographic process.
In the Post-Interview, we conducted a semi-structured interview
regarding the queries raised during the Contextual Inquiry geared
toward preparation, studio, and reflection stages. We conducted an
analysis based on the interview transcriptions and recorded videos
and performed affinity diagramming [34] to identify user needs for
improvement in the choreography creation process.

3.3 Findings and Design Implication
3.3.1 Exploring Layering in Choreography and Addressing Memory
Dependency. During the choreography creation process, we ob-
served that all participants showed a pattern of gradually building a
choreography sequence. Participants built choreography count by
count to compose detailed sequences. Here, we define this process
as layering. P4 and P8 noted that layering process allowed them to
focus on the nuances of choreographic movements and continuity
among them. On average, choreographers engaged in 12.53 (𝜎=7.33)
repetitive layering to complete an 8-count sequence. Participants
expressed frustration and anxiety when they forgot parts of their
choreography (P3∼P5), which necessitated starting from scratch.
To avoid the risk of losing track of created choreography, all partici-
pants preferred to record their works frequently using smartphones.
However, they found this process highly inconvenient and disrup-
tive to their creative flow. While reviewing their recordings helped
recall sequences, the frequent pauses to record and review were
described as tedious and time-consuming.

To reduce the cognitive load for memorizing previously crafted
sequences, we introduce a snapshot feature, virtual avatar-based
record and replay feature for layering. This feature allows speci-
fied intervals of choreography to be recorded and supports replay
for choreographers to seamlessly add newly composed sequences.

This approach mitigates the memorization issue and prevents los-
ing any fleeting motions that occur spontaneously and are easily
forgettable. We aim to support an 8-count-based recording sys-
tem predicated on the scenario wherein choreographers create and
organize choreography based on 8-count phrases.

3.3.2 Choreographers’ Creative Plateaus and Designing Choreogra-
phy Suggestion System. Choreographers invested significant time
in the ideation phase. All participants expressed a desire to cre-
ate new and original choreography but reported difficulties in the
process. To inspire their creativity, participants engaged in improvi-
sational movements (P2, P3, P5) or referred other choreographers’
works on media platforms such as YouTube1, Instagram2, and Tik-
Tok3 (P1∼P3, P5∼P8). These references helped them understand
how other choreographers think, feel, and express the given song.
Participants referred to videos of other choreographies for the same
song they were working on (P2, P3, P5∼P8), different songs from
similar genres (P1, P3, P6∼P8), and even different genres (P1, P5,
P6). They expressed concerns about directly copying the referenced
choreography (P2, P3, P6∼P8). As a result, participants focusedmore
on emotional and visual impressions of movements or interaction
with the music when reinterpreting the referenced choreographies
into their own (P1, P2, P6, P8).

To help choreographers overcome these creative plateaus, previ-
ous dancemotion generation algorithms [45, 71, 78] and system [46]
have made valuable contributions. There still remains room for
improvement in aligning generated movements with choreogra-
phers’ creative processes and intentions. In this work, we propose a
choreography suggestion system that takes into account the chore-
ographers’ scenario context. We aim to meet two key criteria for
high-quality choreography: harmony with the current music and
continuity between existing and generated motions. Inspired by
choreographers’ tendency to refer to dance videos on platforms
like YouTube when facing creative plateaus, our system suggests
a set of dance motions exerted from online dance videos in two
steps. First, we identify the audio source that shows high similarity
with the music the choreographers are working with and use it to
extract potential dance motions. From these motions, we then eval-
uate their similarity to the choreographer’s existing sequence to
suggest the most compatible motions to support a smooth creation

1https://www.youtube.com/
2https://www.instagram.com/
3https://www.tiktok.com/
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flow. In this way, we ensure both harmony with music and motion
continuity while resolving creative plateaus in dance composition.

3.3.3 Towards a Systematic Choreography Analysis with Quantified
Feedback. Participants mentioned that they carry out peer or self-
evaluations on their choreography to enhance the completeness (P1,
P3, P6, P8) which ensures the seamless alignment with the flow of
the music and the previously crafted motions (P1, P2, P7). However,
the current way of getting feedback from peers is often hard to in-
terpret since the comments often include an abstract and subjective
context. Moreover, the choreographers expressed a strong desire to
receive quantitative feedback. To support these needs, we introduce
a choreography analysis system based on kinematic features.

Participants wished to receive objective data to better under-
stand body balance and correct asymmetries (P7, P8) for improving
body control. To this end, we came up with Motion Equability met-
ric that computes the distance between the center of gravity and
foot placement. Participants also emphasized the importance of
quantitative feedback on movement counts within the same beat.
They valued data on which joints were active or inactive, enabling
them to explore and utilize underused joints (P5∼P8). They ex-
pressed a desire to visualize the activation levels within sequential
dance movements to ensure harmony and coherence between the
movements (P1, P2, P5). Here, we implemented Motion Engage-
ment which highlights both salient and non-salient joints for visual
feedback. Furthermore, participants wanted feedback on how they
used spatial elements, particularly asymmetrical spaces, to improve
spatial awareness (P3, P8). To support this, we propose Motion Sta-
bility metrics where one evaluates foot stability by tracking kinetic
energy to detect unnecessary movements while another one tracks
joint movement in spatial quadrants to assess space utilization.

4 ChoreoCraft
We propose ChoreoCraft (Figure 2) that enables an in-situ choreog-
raphy craft in VR. Users can craft choreography with interactive
virtual avatars along with creative support tools including sugges-
tion and analysis interfaces. For our in-situ choreography craft
interface, we apply the layering concept as the snapshot function.
Overall ChoreoCraft consists of (1) in-situ VR record-and-replay,
(2) choreography suggestion, and (3) choreography analysis. We
built an entire system in the Unity4 game engine.

4.1 Choreography Supportive System in VR
We aim to support choreographers in crafting choreography within
a VR environment. VR was chosen as the interface for its ability to
offer an immersive and focused environment, minimizing distrac-
tions and enhancing creative engagement. VR lets choreographers
seamlessly transit between ideation and execution in-situ to form
an uninterrupted workflow [27]. By removing the constraints of
physical space and time, VR also enables the creative process to
occur beyond the traditional studio setting, offering flexibility and
accessibility. To achieve this, we implemented a robust motion cap-
ture configuration that allows dancers to record their movements
and replay motion clips. Our system utilizes Azure Kinect [51],

4https://unity.com/

which supports real-time human motion tracking of 32 joints’ posi-
tional and rotational data. For the snapshot function, we capture
the dancer’s series of motions at each segmented frame interval (60
[sec]/BPM × 8) and generate a corresponding avatar in VR, which
replays the recorded movements upon clicking. These features
were designed to harness VR’s potential to better support chore-
ographers by creating an immersive, flexible, and distraction-free
creative environment.

To compare input motion sequences from Azure Kinect with
the SMPL-represented motion database, we pre-process motion
data from different representations using the Iterative Closest Point
algorithm [87]. The process involved computing optimal rotation
matrices and translation vectors to align with two datasets, focusing
on a common joint representation between the two systems. More
details can be found in Appendix B.

4.2 Choreography Suggestion System
We propose a choreography suggestion system to alleviate choreog-
raphers’ creative plateaus and assist in the creation of high-quality
choreography (Figure 3). To consider the harmony between music
and choreography, our system utilized the Spotify recommender
API5 that offers high-performance cognitive evaluations [5]. This
API extracts lists of similar music tracks based on the input music
and then collects choreography videos corresponding to identi-
fied music tracks (solo and group performances) from social media
platforms. We converted these videos into 3D poses using a state-
of-the-art (SOTA) 3D human pose estimation model called WHAM
model [67]. When users encounter creative plateaus during chore-
ography creation, they input ongoing motion sequences to receive
suggestions for following choreography. The system employs dy-
namic time warping to measure the motion similarity between the
user’s input and database sequences. Then, the system returns the
subsequent 8-count choreography sequence from the most similar
motion. Overall, our system suggests choreography considering
both the musical context and preceding movements.

4.2.1 Dynamic Time Warping for Dance Motion Similarity. Dy-
namic time warping (DTW) [53] is a widely adopted algorithm
for analyzing time-series data across various fields, including ki-
nesiology [64, 73] and musicology [11, 60]. DTW showed robust
performance when comparing data with spatiotemporal distortions.
To compare dance motion similarity, we propose DanceDTW (Fig-
ure 4), an extension of the multi-dimensional similarity comparison
algorithm by Shokoohi-Yekta et al. [68] and incorporating the ro-
tation information handling technique from [65]. We mainly used
positional and rotational information of joints from two dance
motions to assess the similarity. The lower final cost (𝐶𝑡𝑜𝑡𝑎𝑙 ) indi-
cates a higher degree of similarity among compared motions. Our
approach mitigates the challenges associated with similarity com-
parison in sequential motion data, addressing issues arising from
anthropometric variations and data capture differences across sub-
jects, leading to enhanced performance. Please refer to Appendix A
for a detailed DanceDTW algorithm.

5https://developer.spotify.com/documentation/web-api/reference/get-
recommendations
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Let (𝑋,𝑌 ) be a pair of input and reference motion data sequences,
where:

𝑋,𝑌 ∈ R𝐹×( 𝐽 ×7) . (1)

Here, 𝐹 is the number of frames, 𝐽 is the number of joints (with 𝐽 =

24), and 7 represents positional (in mm) and rotational (quaternion)
information: (𝑃𝑥 , 𝑃𝑦, 𝑃𝑧 , 𝑅𝑤 , 𝑅𝑥 , 𝑅𝑦, 𝑅𝑧) The articular structure and
representation in this instance adhere to themethodology employed
in the SMPL model [47].

We adjusted the offset between input datasets and applied min-
max normalization as follows:

𝑍 =
1
2
(𝑋 + 𝑌 ), 𝑍 ∈ R( 𝐽 ×7) , (2)

𝑓 : R𝐹×( 𝐽 ×7) → R𝐹×( 𝐽 ×7) , 𝑓 (𝑥) = 𝑥 − 𝑍, (3)

𝑔 : R𝐹×( 𝐽 ×7) → [0, 1]𝐹×( 𝐽 ×7) , 𝑔(𝑥) = 𝑥 −min(𝑥)
max(𝑥) −min(𝑥) .

(4)
The preprocessing methodology adjusts data ranges to compen-

sate for variations stemming from anthropometric differences and
disparate recording conditions. Using offset adjustment and min-
max normalization (Equations 3 and 4), we compensate for physical
differences, variations in a range of motion, and disparities in data
sensing methodology. This compensation enables the robust recog-
nition of similarities between two target motions performing the
same action regardless of recording conditions. After adjusting the
position and rotation data, we applied multi-dimensional DTW and
multiplied each resulting cost by a coefficient to modulate each
processing function.

We define the multi-dimensional DTW operation by employing
the Independent DTW approach from [68], which allows us to
handle the translational and rotational dimensions of each joint
independently:

DTW𝐼 (𝑋,𝑌 ) : R𝐹×(dim.) × R𝐹×(dim.) → R. (5)

For each joint 𝑗 , we calculate the costs for position and rotation
as follows:

𝑐𝑝𝑓 ,𝑗
= 𝜆𝑓 · DTW𝐼 (𝑓 (𝑋𝑝,𝑗 ), 𝑓 (𝑌𝑝,𝑗 )),

𝑐𝑝𝑔,𝑗 = 𝜆𝑔 · DTW𝐼 (𝑔(𝑋𝑝,𝑗 ), 𝑔(𝑌𝑝,𝑗 )),
𝑐𝑟 𝑓 ,𝑗 = 𝜆𝑓 · DTW𝐼 (𝑓 (𝑋𝑟, 𝑗 ), 𝑓 (𝑌𝑟, 𝑗 )),
𝑐𝑟𝑔,𝑗 = 𝜆𝑔 · DTW𝐼 (𝑔(𝑋𝑟,𝑗 ), 𝑔(𝑌𝑟, 𝑗 )) .

(6)

Here, 𝜆𝑓 and 𝜆𝑔 adjust the range of the results from Equations 3
and 4, respectively, with the constraint that 𝜆𝑓 + 𝜆𝑔 = 1. This adjust-
ment process compensates for the results obtained between offset
adjustment and min-max normalization.

Next, we gather the position-related costs for all joints:

𝑐𝑝,all = {𝑐𝑝𝑓 ,𝑗
, 𝑐𝑝𝑔,𝑗 | 𝑗 = 1, . . . , 𝐽 , . . . , 𝐽 × 3}. (7)

To incorporate both position and rotation costs into the total cost,
we normalize each position-related cost to remove units. Through
this process, the value of 𝑐𝑝,norm, 𝑗 is transformed into an actual
number within the range of [0, 1].

𝑐𝑝,norm, 𝑗 =
𝑐𝑝,𝑗 −min(𝑐𝑝,all)

max(𝑐𝑝,all) −min(𝑐𝑝,all)
for each 𝑐𝑝,𝑗 ∈ 𝑐𝑝,all . (8)

Finally, we calculate the total position and rotation costs,𝐶𝑝 and
𝐶𝑟 , as follows:

𝐶𝑝 =

2× 𝐽 ×3∑︁
𝑗=1
(𝑐𝑝,norm, 𝑗 ) (unitless), (9)

𝐶𝑟 =

𝐽 ×4∑︁
𝑗=1
(𝑐𝑟 𝑓 ,𝑗 + 𝑐𝑟𝑔,𝑗 ) (as quaternions are unitless). (10)

The final total cost is given by:

𝐶total = 𝜇𝑝𝐶𝑝 + 𝜇𝑟𝐶𝑟 , where 𝜇𝑝 + 𝜇𝑟 = 1 (11)

Here, 𝜇𝑝 and 𝜇𝑟 adjust for the range and scale differences be-
tween 𝐶𝑝 and 𝐶𝑟 , respectively. These parameters were fitted using
Bayesian optimization, as discussed in the next section.
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4.2.2 Evaluation of DanceDTW. In the context of similarity com-
parisons within the dance domain, we conducted fitting procedures
for the modulating features 𝜆 and 𝜇 in the aforementioned Equa-
tions 6 and 11 based on actual choreography similarity compari-
son datasets. These fitting procedures were essential to optimize
DanceDTW’s performance and ensure its applicability to actual
choreographic data. The dataset is primarily comprised of dance
learning class videos featuring the instructor’s reference choreog-
raphy and students’ performances. These reference, student
video pairs capture the same choreography performed by different
individuals or recorded from slightly different angles and timings.
We evaluate the algorithm’s efficacy to compensate for physical
disparities between subjects and range of motion variations. Conse-
quently, the dataset spans 9 genres and 11 dance videos, averaging
7.15 8-count chunks (𝜎=2.38) per video. Each dataset is structured
as an ref., stu. pair, containing 24 joints with both position and
rotation information.

We conducted coefficient fitting using 90 pairs of video data
(1,300 video chunks) and evaluated 9 pairs (116 video chunks). This
process involved fitting coefficients to classify identical 8-count
chunks within the same genre and dance for paired dance motion
data. Bayesian optimization [29] was employed for coefficient fitting
with the objective function set to maximize the number of correctly
classified pairs. We set the number of evaluations of the objective
function as 50. The derived coefficients through data fitting are 𝜆𝑓 =

0.9386, 𝜆𝑔 = 0.0614, 𝜇𝑝 = 0.0008, 𝜇𝑟 = 0.9992, yielding an accuracy
of 86.31% on the training set and 89.66% on the evaluation set.
Details about Bayesian optimization can be found in the appendix A.

Subsequently, we validated the classification performance using
the UCR Time Series Classification Archive [14] and the chore-
ographic similarity comparison dataset. In the comparison with
standard DTW on the UCR dataset, our method demonstrated su-
perior or equivalent performance in 50.6% (42/83) of cases, with
48.2% (40/83) showing superior performance and 2.4% (2/83) ex-
hibiting equivalent results. When considering a 10% error tolerance,
the performance improved to 91.57% (76/83), and with a 20% error
tolerance, it further increased to 96.38% (80/83). When evaluated
against a choreographic similarity comparison dataset, the stan-
dard DTW algorithm achieved an accuracy of 15.96%, while our
proposed method attained an accuracy of 89.66%. This substantial
improvement suggests that our approach not only performs the
function of DTW but also demonstrates high applicability to actual
choreographic similarity comparison tasks.

4.3 Choreography Analysis System
Drawing from the design implications, we develop a choreography
analysis system, which provides analytical metrics for a sequence of
crafted choreographies (Figure 5). For all the Equations, i indicates
the number of frames, j indicates joints and t implies the time
unit (1[sec]) used in Unity.

𝐹eq : Measure of Equilibrium. Any imbalance is considered
a significant error that affects the assessment of dance choreogra-
phy [9, 55]. To identify loss of balance, we track the distance from
the body’s center of mass to the rectangle Z formed by the per-
former’s feet [55]. Rectangle Z is defined with values four vertical

components from feet ankles (Left Ankle: (𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙 ), Right An-
kle: (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 )), rectangle Z: (𝑥𝑙 , 𝑧𝑙 ), (𝑥𝑙 , 𝑧𝑟 ), (𝑥𝑟 , 𝑧𝑟 ), and (𝑥𝑟 , 𝑧𝑙 )).
Then measures the distance between the barycenter of the upper
body 𝐵 = (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏 ) [55]. To provide the objective score based on
the distance, we tracked the maximum distance (max(𝐹eq)) peaked
throughout their crafted choreography and calculated the overall
score (Equation 13).

𝐹eq =

√︂(𝑥𝑟 + 𝑥𝑙
2
− 𝑥𝑏

)2
+ 𝑦2

𝑏
+
(𝑧𝑟 + 𝑧𝑙

2
− 𝑧𝑏

)2
, (12)

Overall Score for 𝐹eq =
1
𝑛

𝑛∑︁
𝑖=1

(
𝐹eq,𝑖

max(𝐹eq)
× 100

)
. (13)

𝐹sb : Feet Position Stability. Here, we measure the stability of
the feet’ positions during the performance. Feet need to remain
steady and calm in between consecutive frames, and better choreog-
raphy avoids any unnecessary support from movements, slipping,
or leg vibrations [3, 10]. For each frame 𝑖 , two values are calculated:
(1) the kinetic energy of the feet, 𝐸 𝑓

𝑖
, and (2) the filtered kinetic

energy, 𝐸𝑓 𝑓
𝑖
, using a low-pass filter (settled cutoff frequency: 10hz).

|𝐸 − 𝐸𝑓 | represents the absolute difference between the energy and
the filtered energy, while max(𝐸, 𝐸𝑓 ) normalizes the stability mea-
sure [9, 55]. The score indicates that a higher overall score for 𝐹sb
corresponds to greater stability for both feet (Equation 15). Here, L
refers to left, and R refers to right.

𝐹sb,l = 1 − |𝐸𝑙 − 𝐸𝑓𝑙 |
max(𝐸𝑙 , 𝐸 𝑓𝑙 )

, 𝐹sb,r = 1 − |𝐸𝑟 − 𝐸𝑓𝑟 |
max(𝐸𝑟 , 𝐸 𝑓𝑟 )

, (14)

Overall Score for 𝐹sb =
1
𝑛

𝑛∑︁
𝑖=1

(
1 −

|𝐸𝑖,𝑙 − 𝐸𝑓𝑖,𝑙 |
max(𝐸𝑖,𝑙 , 𝐸 𝑓𝑖,𝑙 )

)
× 100. (15)

𝐹sj and 𝐹nsj : Visualization of Salient/Non-Salient Joints. For
𝐹sj and 𝐹nsj, we aim to identify the salient joints by utilizing both
linear and angular acceleration for each input joint. Previous ap-
proach [39] focused solely on angular acceleration to decide salient
joints. We further consider both linear (𝐿𝑖 ) and angular acceler-
ation (𝐴𝑖 ) for determining salient joints since the choreography
involves sophisticated motions [10, 56]. We compute the average of
linear and angular velocities for all joints to compare each joint’s
velocity to the overall mean (Equation 16).

𝐴𝑖 =
1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝛼𝑖 𝑗 , 𝐿𝑖 =
1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝑎𝑖 𝑗 , 𝐹sj,𝑖 = 𝑐1 · 𝐿𝑖 + 𝑐2 · 𝐴𝑖 . (16)

We establish real-time adaptive coefficients (𝑐1,𝑐2) to interpret
acceleration data and apply it to the complexity of salient joints.
A pair of coefficient was designed for both linear and angular ac-
celeration ensuring the sum of each pair equals 1. This pair re-
main inverted when comparing the calculated acceleration for each
frame, suggesting that the coefficient pairs are assigned depending
on the dominant form of acceleration [20, 63]. Since linear and
angular accelerations have different units, we calculated their pro-
portion across all joints. Among various coefficient combinations,
we adopted (0.9, 0.1) as our coefficients, since this configuration
enables highly notable reflections in the calculated joint saliency
values. This configuration enhances visualization by effectively
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Figure 5: Kinematic factors used for choreography analysis derived from our exploratory study. We considered these factors to
cover Motion Equability,Motion Stability, andMotion Engagement for our analysis.

highlighting differences in joint activation and reflecting the com-
plexity of the choreographers’ motion patterns, making the salient
joints more visually distinguishable. If more than 50% of the input
joints (32 joints) are visualized, it creates visual clutter, diminishing
the clarity and effectiveness of information delivery. We therefore
adopted 35% (12 joints) as the number of activated joints. As these
values accumulate across all motion frames, the joints are ranked
in descending order, and for 𝐹sj, numbers of high-ranked joints are
highlighted in Red (RGBA(255,0,0,0)) [1]. In contrast, we visualize
𝐹nsj with numbers of low-ranked joints to show deactivated joints.

𝐹hj : Visualization of high-ranked jerk joints. For 𝐹hj, we ex-
tend our analysis to consider both linear and angular jerks showing
a dynamic view of how joint movements accelerate or decelerate
over time. The linear jerk refers to changes in positional accelera-
tion, whereas the angular jerk captures shifts in rotational accelera-
tion (Equation 17). We average these across all frames and combine
them using coefficients (𝑐 = 0.5).

𝐽𝐴𝑖
=

1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝑑𝛼𝑖 𝑗

𝑑𝑖
, 𝐽𝐿𝑖 =

1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝑑𝑎𝑖 𝑗

𝑑𝑖
, 𝐹hj,𝑖 = 𝑐 · 𝐽𝐿𝑖 + (1 − 𝑐) · 𝐽𝐴𝑖

.

(17)

𝐹sq : Visualization of salient quadrant Here, 𝐹6 tracks the
time spent in each quadrant to show the spatial dynamics of joint
movement. By accumulating the 𝐹6 indicator in every frame, we
provide a clearer understanding of the spatial distribution of joint
movements and highlight any asymmetries or biases in the chore-
ography. We express this in a general Equation that accumulates
the time a joint spends in each of these four quadrants. By denoting
the position of the joint as ®𝑝joint = (𝑥joint, 𝑦joint), the barycenter
position as ®𝑝bary = (𝑥bary, 𝑦bary), and the accumulated time in each
quadrant as 𝑇quadrant. The function 𝛿quadrant ( ®𝑝joint, ®𝑝bary) returns
1 if the joint is in the quadrant based on x and y comparisons, and
0 otherwise (Equation 18). As shown in the Figure 5, four quad-
rants (𝑥joint, 𝑦joint, 𝑥bary, 𝑦bary)’s origin (0,0) is rooted in bary-center
of body, which simultaneously rotates and moves.

𝑇quadrant =

∫ 𝑡

0
𝛿quadrant (𝑥joint, 𝑦joint, 𝑥bary, 𝑦bary) 𝑑𝑡 . (18)

5 User Evaluation
To validate the proposed system, we conducted an IRB-approved
user evaluation that consisted of two sessions. First, we assessed
how well our system suggests motions compared to recent dance
motion generation algorithms. Then, we carried out another evalua-
tion to figure out the most preferred choreography analysis factors
and determine design parameters for visualizing salient joints. We
recruited 18 choreographers (12 female) with diverse experience
levels (2∼13 years, 𝜇 = 5.75, 𝜎=3.91) (See Table 2). Of the 18 par-
ticipants in the user evaluation, six had previously participated
in the exploratory study. This evaluation involved a total of four
surveys (two surveys per session), each lasting for 30∼60 minutes,
and we compensated 75 USD.

5.1 User Evaluation 1: Validation of
Choreography Suggestion System

Prior research [46] demonstrated the use of generative-AI (GenAI)
to overcome creative plateaus in choreographic processes. Build-
ing on this, we evaluated how effectively GenAI met the criteria
from our exploratory study. Specifically, we focused on its abil-
ity to support "high-quality choreography" and reduce creative
plateaus. We conducted a user evaluation to compare the proposed
choreography suggestion system against two baseline GenAI-based
motion generation models. This evaluation aims to assess each
model’s ability to reflect the contextual nuances of choreographic
creation. The baseline models include 1) a GPT-based motion gener-
ation from audio and starting pose inputs (Bailando [71]) and 2) A
transformer-based diffusion model that generates dance motions in
response to audio input (EDGE [78]). To ensure a fair comparison,
we chose these as baseline models to represent SOTA performance
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Table 2: Demographic and Background Information of Participants for User Evaluation

ID Gender Dance Experiences Choreographic Experiences Main Genre
P1 F 8 years 4 years B-Boying, Breaking
P2 F 6 years 3 years Choreography
P3 M 3 years 3 years Choreography, Hip-hop
P4 F 3.6 years 3 years Choreography
P5 F 12 years 10 years Choreography
P6 F 14 years 10 years Choreography, Hip-hop
P7 F 6 years 5 years Choreography, Hip-hop
P8 F 15 years 13 years Choreography, Hip-hop
P9 F 8 years 8 years Choreography
P10 F 11 years 3 years Choreography
P11 F 16 years 2 years Choreography
P12 M 5 years 5 years Choreography, Hip-hop
P13 F 2.5 years 2.5 years Heel Choreography
P14 F 8 years 6 years Modern Dance
P15 F 6 years 6 years Heel Choreography
P16 M 2 years 2 years Choreography, Hip-hop
P17 M 5 years 3 years Choreography, Hip-hop
P18 M 16 years 15 years Choreography, Hip-hop

in motion generation [35, 48, 70, 72] to minimize artifacts gener-
ated by GenAI. Additionally, extremely unnatural motions such as
static poses or joint hierarchy distortions were excluded during the
survey preparation process to avoid biases.

Our study compared a total of 45 dances (9 genres × 5 dances).
The dance genres include breaking, hip-hop, house, jazz, k-pop,
krump, locking, popping, and waacking. We designated one 8-count
sequence for each method to carry out motion suggestion/gener-
ation and either use the music and motion data (our method &
Bailando) or only music data (EDGE) as input. For music data, we
provide the segment of the part that needs to be suggested/gener-
ated, whereas we feed the preceding 8-count motion data, which is
required for our method and Bailando. We used the Bailando and
EDGE models pre-trained on the AIST++ dataset [79], encompass-
ing all 9 genres above, with the default model configuration.

We conducted the evaluation through an online survey via Tally
Forms6. Participants first watched a reference choreography, and
they subsequently viewed three dance clips generated by different
methods for the reference choreography. Then, the participants
responded to six questions regarding these observations. We con-
structed the question shown in Table 3 with criteria related to
high-quality choreography (Q1∼2) and utility (Q3∼6), which we
identified from the exploratory study. Participants reported priority
ranking (from 1st to 3rd) for given methods for Rank questions
and a 7-point Likert scale for Preference questions. We random-
ized the three generated motions across questions using a Latin
square design. We divided the survey into two parts to avoid the
fatigue effects. Each participant evaluated a total of 135 motions (45
reference motions × 3 methods).

6https://tally.so/

Table 3: Types and Content of Questions Employed in User
Evaluation 1

Types Questions
Rank Q1. Rank the continuity between the preceding

motion and each generated motion.
Rank Q2. Rank the congruence between the back-

ground music and derived dance motions.
Preference Q3. Evaluate the continuity between the preced-

ing and the three dance motions.
Preference Q4. Assess the level of harmony between the mu-

sic and dance motions.
Preference Q5. Evaluate the extent to which each dance mo-

tion stimulates choreographic creativity.
Preference Q6. Assess how the presented choreography

could be incorporated into actual dance creation.

This study collected 4,860 responses (45 items × 6 questions ×
18 participants). We used Friedman test [96] because each par-
ticipant independently performed and evaluated multiple condi-
tions (non-parametric method). We statistically validated the differ-
ences in evaluations across the conditions to ensure the reliability of
our findings. Regarding the Rank evaluation, our method achieved
a winning rate of 93.70% and 92.72% for Q1 and Q2 accordingly,
securing the first position (Figure 6).

In Preference results, we observed significant differences among
the three approaches in Q3 as indicated by the Friedman test statis-
tics (𝜒2 (2) = 1197.5, 𝑝 < 0.001). The post-hoc Dunn’s test further
confirmed the superiority of our method with significant results
against EDGE (𝑝 < 0.001) and Bailando (𝑝 < 0.001). Similarly, the
proposed system demonstrated significant superiority over the base-
lines in the other three criteria (Q4∼6) as well. In Q4, the test results
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Figure 6: Result of User Evaluation 1. The above two graphs represent the results of Q1 and Q2, and the below four graphs
represent the results of Q3∼6 from Table 3. The below four graphs aim to examine the significance between our method and the
two GenAI models. The pairs indicated by asterisks showed statistically significant differences according to Dunn’s post-hoc
test (∗ ∗ ∗ : 𝑝 < 0.001).

were 𝜒2 (2) = 1185.4, 𝑝 < 0.001 with significant differences against
EDGE (𝑝 < 0.001) and Bailando (𝑝 < 0.001). For Q5, 𝜒2 (2) = 986.47,
𝑝 < 0.001 with significant differences against EDGE (𝑝 < 0.001)
and Bailando (𝑝 < 0.001). Lastly, the results were 𝜒2 (2) = 945.95,
𝑝 < 0.001 with significant differences against EDGE (𝑝 < 0.001)
and Bailando (𝑝 < 0.001). Based on the results, we confirmed the
favorable user inclination on our suggestion system over baseline
models across all criteria.

5.2 User Evaluation 2: Validation of
Choreography Analysis Factors

We have drawn six main choreography analysis factors from design
implications in Section 4.3. In this session, we explored the user
preference on six analysis factors (𝐹eq, 𝐹sb, 𝐹sj, 𝐹nsj, 𝐹hj, 𝐹sq).
In order to inspect the users’ preference, we prepared four dance
motion clips of upper-body and lower-body activated motions using
Mixamo7. Then, we showed six different analysis factors along with
the motion clips. For evaluation, we conducted evaluations through
surveys with Google Form8.

We asked participants “Please rank factors from 1 (most impor-
tant) to 6 (least important) based on what you need the most in
your choreography process.” Participants reported a preference for
choreography analysis factors with a 7-point Likert scale, along
with short responses related to their choices. Here, Friedman test
revealed significant differences in participant preferences (𝑝 <

7https://www.mixamo.com
8https://www.google.com/forms

R
a
n
k

1

2

5

6

3

4

Feq Fsb Fsj Fnsj Fhj Fsq

*
*

**

Figure 7: Result of User Evaluation 2. The Y-axis indicates
Rank (1: most important, 6: least important). Pairs grouped
by asterisks were significantly different by Durbin-Conover
post-hoc tests (∗ : 0.01 < 𝑝 < 0.05, ∗∗ : 𝑝 < 0.01).

0.01). Shown in Figure 7, Post-hoc pairwise comparisons (Durbin-
Conover) revealed significant differences between 𝐹hj and 𝐹sq com-
pared to 𝐹eq, 𝐹sb, and 𝐹sj (𝑝 < 0.05). 𝐹sb, and 𝐹sj were consistently
ranked as themost important factors while there were no significant
differences found between 𝐹sb and 𝐹nsj, 𝐹eq. This strong preference
for equilibrium (𝐹eq) and stability-related metrics (𝐹sb and 𝐹sj) high-
lights their critical role in ensuring balance and stability during
choreography creation. Participants likely prioritized these met-
rics because they directly contribute to the physical alignment and
control needed to craft and refine movements (P3, P4, P15). The
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overlap in rankings between 𝐹nsj, 𝐹hj, and 𝐹sq, however, indicates
that these factors were perceived as less crucial, suggesting a more
specialized or supplementary role in the creative process. Partici-
pants preferred equilibrium and feet stability measurements (𝐹eq
and 𝐹sb) since these factors directly represent the physical balance
of the choreography which is crucial component in creating new
motion (P2, P7, P10). P7 mentioned “I think 𝐹sb, 𝐹eq, 𝐹sj necessary
in the process of creating techniques because it requires an under-
standing of skilled physical and balance." For visualization of salient
joint (𝐹sj), participants (P3, P4, P7, P12) favored the easiness of cap-
turing the activated joints information during the choreography.
Participants showed moderate interest in 𝐹nsj, 𝐹hj and 𝐹sq since
they were involved in small movements or showed visualization
that limited movement for creating choreography.

6 User Study
From the previous evaluation (Section 5), we confirmed the validity
of our approach, and preferred choreography motion analysis fac-
tors. Then, we moved on to a user study consisting of 2 sessions to
investigate our system’s main features, including choreography cre-
ation in VR, choreography suggestion, and choreography analysis.
Each study aimed to validate our motion suggestion and analysis
systems. The studies were approved under the IRB protocols.

6.1 Participants and Setup
Participants. We recruited 10 professional choreographers (5 fe-

male, mean age of 28.9, 𝜎 = 6.06) skilled in diverse dance genres (Ta-
ble 4). We recruited choreographers who had not been involved in
any prior studies to minimize potential biases from prior percep-
tions. To assess our system for people with a deeper knowledge
of professional choreographic processes, we enlisted choreogra-
phers who have careers of an average of 8.6 years (𝜎 = 5.4). The
user study was conducted for up to 3 hours, and participants were
compensated with 100 USD.

Apparatus. We configured our system (Figure 8) in real-time us-
ing a VR HMD (Meta Quest 3) [50] and Azure Kinect. Participants
used the right-hand controller to control VR interface functions.
For the baseline experiment, we set up a mirror (Width: 1m and
Height: 1.7m) to mimic a dance studio environment. To avoid dis-
turbance for participants for the baseline experiment, we installed
a wall screen to avoid direct observation of their movements. For
video recording, the screen was not used for ChoreoCraft.

6.2 Study Design
For the baseline experiment, we asked participants to craft choreog-
raphy in the original routine, crafting choreography in front of the
mirror. There was no time limit set for creating the choreography,
and each choreographer was instructed to create the choreography
in their usual manner. According to Figure 8, to validate Chore-
oCraft, we had a training session with a random song and went
through all functions with guidance. Then, we conducted the study
starting with the session 1. We conducted the question consec-
utively and proceeded to session 2. After all sessions ended, we
conducted a short qualitative interview.

6.2.1 Study Session 1: Observing the Impact of the Creative Pro-
cess in VR Environments and Choreography Suggestion Systems on
Crafting Choreography. The objectives of this experiment are as fol-
lows: (1) verifying the enhancement of creativity in choreographic
creation within a VR environment, (2) examining the reduction
in memory dependence during the choreographic process, (3) as-
sessing the augmentation of creativity and the inspiration process
facilitated by the choreography suggestion system, and (4) evaluat-
ing the increase in efficiency compared to the baseline.

The musical selections encompassed a range of BPMs capable
of accommodating all 9 dance genres within our choreographic
similarity comparison dataset and participants’ dance genres. Two
songs were chosen at 108 BPM: "One Time Comin’" (YG, 2016)
and "In the Club" (Taufiq Akmal, 2022). To facilitate choreography
creation for dance genres that are not typically associated with
slower BPM genres like house [79], two additional songs at 134
BPM were selected: "Beggin’" (Måneskin, 2017) and "That’s What
I Like" (Bruno Mars, 2017). We selected songs with high popular-
ity (YouTube view counts exceeding 1 million). We confirmed that
participants had no prior experience creating choreography for
these specific tracks. Within each BPM category, one song was des-
ignated for use with our system ("One Time Comin’" and "Beggin’"),
while the other was allocated for the baseline creative approach
("In the Club" and "That’s What I Like").

In the actual experiment process, users create choreography in
8-count segments while interacting with the VR environment and
avatar using the snapshot function. To assess the utility of the chore-
ography suggestion system, participants were instructed to use the
suggestions function at least twice during the creation of four 8-
count segments. While users composed choreography through the
proposed system, the experimenter observed the creative process
and recorded it using an additional camera.

Following the completion of Study 1, we administered a sur-
vey to the participants using a 7-point Likert scale, addressing the
following questions written in Table 5. Q1∼4 were designed to eval-
uate the efficacy of the choreographic creation process utilizing the
VR environment and avatars, and Q5–9 were formulated to assess
the effectiveness of the choreographic creation process using the
choreography suggestion system.

6.2.2 Study Session 2: Assessment of Choreography Analysis Sys-
tem. Before conducting a motion analysis system study, we briefly
explained the meanings of each factor that we are providing. Par-
ticipants are required to playback the final recording from each
8-count they recorded that brought up with associated with chore-
ography analysis factors. We let users freely playback the motions
anytime before they are ready to modify the previous choreogra-
phy. We asked for participants to record the new motion if they
were willing to modify their previously recorded motion based on
the feedback from the analysis system. If not, they completed the
study with a new motion recording. Across two repeated sessions,
evaluations were provided sequentially, with each 8-count segment
receiving its corresponding analysis. In the final 8-count segment,
a combination of 𝐹eq, 𝐹sb, and 𝐹sj was presented. Following the
completion of Study 2, we also carried out a short survey of the
participants using a 7-point Likert scale with Q10∼14 from Table 5.
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Figure 8: (a) refers to the environment of baseline condition, we settled the mirror and a partition. (b) refers to an environment
using ChoreoCraft, wearing HMD, with Azure Kinect set-up. We conducted two sessions, before initiating ChoreCraft, we
proceeded with a practice session. Baseline condition and ChoreoCraft conditions were randomly mixed. Here, (c) and (d) refer
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Table 4: Demographic and Background Information of Participants for User Study

ID Gender Dance Experiences Choreographic Experiences Main Genre
P1 F 5 years 2 years Choreography
P2 M 10 years 7 years Poppin, Bebop
P3 M 8 years 6 years Hip-Hop, Choreography
P4 M 25 years 22 years Modern Dance, Hip-Hop
P5 M 15 years 10 years Locking
P6 F 8 years 6 years Heel Choreography
P7 M 14 years 12 years Hip-Hop, Modern Dance
P8 F 10 years 8 years All genre
P9 F 8 years 6 years Hip-Hop
P10 F 9 years 7 years Waacking

6.3 Results
The results from the study showed (1) the impact of VR environ-
ment and avatar interaction, (2) the influence of the choreography
suggestion system, and (3) the effect of the choreography feedback
system on the choreography creation process.

6.3.1 The impact of VR environment and avatar interaction. Chore-
ographers demonstrated positive responses to the process of creat-
ing choreography in a VR environment and interacting with avatars.
To evaluate the system’s effectiveness, participants rated stimulat-
ing creativity from creation in VR and interaction with avatars,
resolving the memory dependency, improving the creative plateaus,
and efficiency of the choreographic process on a 7-point Likert
scale as shown in Table 5. Participants rated the extent to which
VR choreography creation stimulated creativity (Q1) at an average
of 4.85 (𝜎=1.53). Similarly, they rated the degree to which interac-
tion with avatars in the VR environment stimulated creativity in
choreography creation (Q2) at an average of 4.7 (𝜎=1.38). Partici-
pants highlighted several aspects of creation in VR and interaction
with avatars. Choreographers expressed that in-situ VR supportive

features enhanced the choreographic process by providing an im-
mersive experience. P2 stated “VR choreography creation seems to
induce high levels of immersion and concentration.” Also, they men-
tioned opening up new creative possibilities for choreographers.
P4 commented “I felt that the fusion of choreography and technology
could present good possibilities for dancers.” In addition, choreogra-
phy with avatar offers choreographers a refreshing perspective on
their movements, inspiring creativity and unique choreographic
expressions beyond traditional mirror-based practices. P6 noted,
“Seeing the avatar mimic my movements was novel and entertain-
ing. This aspect could potentially spark creativity and lead to unique
movements.” P10 found the experience of dancing with an avatar
representation refreshing, saying, “The experience of re-expressing
myself through an avatar and dancing together was new, compared to
always seeing myself in the mirror.” However, participants expressed
discomfort with the system’s inability to accurately track detailed
expressions such as the avatar’s delays, waves, facial expressions,
and finger gestures. The snapshot function was favored by partic-
ipants. All participants utilized snapshot feature to review their
created choreography and continue the creative process. When
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Table 5: Questions and Objectives Employed in User Study

Questions Objectives

Q1. Please evaluate the extent to which choreographic creation in a VR envi-
ronment stimulates creativity.

To examine the impact of the overall choreographic creation process in a VR
environment on creativity enhancement.

Q2. Assess the degree to which interaction with avatars in the VR environment
enhances creative processes in choreography creation.

To investigate the effect of avatar interaction in the VR environment on aug-
menting creativity in dance composition.

Q3. Evaluate whether the snapshot feature in our system reduces instances of
choreographic forgetting compared to usual practices.

To assess the influence of the snapshot feature in our system on reducing
choreographic forgetting.

Q4. Compare the sense of unfamiliarity in the VR and avatar-assisted choreo-
graphic process to your typical dance creation environment.

To explore the sense of unfamiliarity when using this system compared to the
actual choreographic creation process.

Q5. Assess the convenience of utilizing the dance suggestion system compared
to the traditional process of seeking inspiration for choreography (e.g., browsing
dance videos on a mobile device during the creative process).

To evaluate the convenience offered by the choreography suggestion system in
generating new motions compared to the traditional choreographic process.

Q6. Rate the extent to which the dance suggestion system aids in reducing
deliberation time for subsequent choreography creation.

To determine whether the system alleviates creative plateaus in choreographic
composition.

Q7. Assess the degree to which the dance suggestion system contributes to
inspiring new choreographic ideas.

To investigate whether the choreography suggestion system provides inspira-
tion for dance creation.

Q8. Evaluate the impact of the dance suggestion system on the time efficiency
of the choreographic process.

To examine the impact of the choreography suggestion system on the temporal
efficiency of dance creation.

Q9. Evaluate your willingness to utilize the choreography suggestion system in
future choreographic processes.

To assess the willingness to use the choreography suggestion system in future
dance compositions.

Q10. Evaluate how well you generally accept feedback from others on the
choreography you crafted.

To assess the openness to external feedback on choreographic decisions in the
creative process.

Q11. Evaluate the overall usefulness of the motion analysis system in assisting
your choreography creation process.

To determine the utility of the motion analysis system in supporting and en-
hancing the choreography development process.

Q12. Evaluate the effectiveness of reviewing each evaluation factor individually
during the choreography process.

To explore the impact of individually assessing evaluation factors on choreo-
graphic refinement and decision-making.

Q13. Evaluate the effectiveness of reviewing evaluation factors all at once during
the choreography process.

To examine the benefits of reviewingmultiple evaluation factors simultaneously.

Q14. Evaluate whether the numerical analysis effectively supported autonomous
interpretation and revision of the choreography.

To investigate the effectiveness of numerical analysis in aiding independent
interpretation and iterative refinement of choreography.

asked if the snapshot function could reduce instances of forgetting
choreography compared to their usual process (Q3), participants
gave an average rating of 5.95 (𝜎=0.86). P2, who struggles with
memorizing choreography, found the feature helpful: “The snapshot
function seems capable of showing the movements through the avatar,
which greatly aided in reducing the memory dependence.” P3 noted
its utility in revising choreography: “Often when thinking about
changing the flow of earlier movements while working on later parts,
I forget the choreography. The snapshot function seems to compen-
sate for this.” P4 highlighted its potential for improvisation: “The
system can record spontaneous movements, which could be good for
reconstructing dancers’ natural expressions.” Other participants (P5,
P8) appreciated how the snapshot function streamlined their usual
process of recording and reviewing choreography with a smart-
phone. P10 emphasized its ability to capture fleeting moments of
inspiration: “There are many moments when I think, ‘Oh, that was a
great move, what was it?’ But you can’t record every moment. This
function could help not to forget flashes of ideas.” Additionally, partic-
ipants valued the system’s ability to overcome spatial and temporal
constraints. P3 noted, “It feels like a significant advantage to be able
to create choreography at any place and time I want, without needing
a mirror.” P6 added, “...it seems like it could increase the efficiency of
choreography creation while using it comfortably at home.”

These findings suggest that the VR choreography system, with
the avatar and its snapshot function, has the potential to enhance
the creative process, and reduce memory dependence, capture spon-
taneous ideas, and provide flexibility in terms of time and location
for choreography creation.

6.3.2 The influence of the choreography suggestion system. Our
study revealed distinctive patterns in how choreographers utilized
the suggestion system. Participants typically employed one of two
approaches: either reconstructing a portion of a single suggested
choreography into their composition (P1, P3, P5, P7∼P10) or cre-
atively combining elements from two or more suggested chore-
ographies to form a new, unique composition (P2, P4, P6). These
patterns demonstrate the system’s flexibility in accommodating
various creative processes. When assessing the system’s conve-
nience compared to traditional inspiration methods during creative
plateaus (Q5), participants gave an average rating of 5.3 (𝜎 = 1.56).
The system’s ability to alleviate creative plateaus (Q6) was rated
even higher, with a mean of 5.85 (𝜎 = 1.67). Participants also pos-
itively evaluated the system’s capacity to provide choreographic
inspiration (Q7), giving an average rating of 5 (𝜎 = 1.47).

Qualitative feedback from participants provided deeper insights
into the system’s impact on their creative process. P1 noted the



ChoreoCraft: In-situ Crafting of Choreography in Virtual Reality through Creativity Support Tool CHI ’25, April 26–May 01, 2025, Yokohama, Japan

system’s ability to suggest innovative motions, stating, “The sug-
gested motions were innovative, offering body utilizations and basic
movements I had yet to consider.” P2 and P4 also added, “It aids in
establishing the overall structure of the choreography. I can lay out
the framework and then refine the details myself.” P5 found that it en-
couraged them to break free from genre-specific constraints, noting,
“The system reminded me of forgotten movements and inspired me to
attempt new motions. It allows for breaking free from genre-specific
choreography and exploring new creative motions.”

The system’s impact on choreographic efficiency (Q8) was no-
tably positive, with a high average rating of 5.6 (𝜎=1.76). P1 reported,
“It seems to maximize efficiency by eliminating wasted time in the
choreographic process.” P5 relied more on the system as their pro-
cess progressed, saying, “I found myself increasingly relying on the
suggestion system as the process progressed, thinking, ‘Oh, there is this
step? Let me adapt it to my style.’ ” P6 highlighted its potential for
quickly creating choreography under time constraints: “The system
could be particularly beneficial when needing to create choreography
quickly and without interruptions, such as when preparing for stu-
dent classes.” Participants expressed a strong willingness to use the
system in the future (Q9) with a high average rating of 5.5 (𝜎=1.78).

In conclusion, these results indicate that the choreography sug-
gestion system effectively supports the creative process, particularly
in overcoming creative plateaus and enhancing choreographic effi-
ciency. The system demonstrates promise for both experienced and
novice choreographers, offering a valuable tool for inspiration and
workflow optimization in dance composition. Its ability to suggest
unexpected motions while allowing choreographers to maintain
creative autonomy is key to its success.

6.3.3 The impact of the choreography analysis system. Through
comparative data, we observed significant changes in key aspects
of choreography: motion equability (𝐹eq), stability (𝐹sb), and en-
gagement (𝐹sj). The extent of these modifications was conducted
to determine the degree of influence the system had solely on
the choreographers’ decisions, providing concrete evidence of its
impact on refining and improving dance sequences. Therefore, par-
ticipants (P2, P7) skipped the modification process and mentioned
“The score of factor is very well reflected, but this is already high
enough (𝐹eq), so I would not want to disrupt the score” and reported
they normally prefer not to accept external feedback (Q10) with
averaging rate of 5.4 (𝜎 = 1.07). However, we observed that 85% of
participants considered modifying their crafted choreography after
going through analysis in our system and rated the usefulness (Q11)
with a high averaging rate of 5.6 (𝜎 = 0.94). P4, P5, P8 utilized 𝐹eq
factor to edit motions, noting “I initially felt that the energy level of
my motion was slightly low, but the review of the precise numerical
data made this more evident”, “This analysis enhanced my ability
to perceive and analyze the details thoroughly, inspiring new ideas
for motion creation”. Participants also reported their autonomous
interpretation and understanding of their choreography (Q14) in a
high averaging score rate of 5.6 (𝜎 = 1.26).

In terms of numerical changes observed during the modification
process, 𝐹eq score increased from an average of 85.46 (𝜎 = 6.29) to
90.85 (𝜎 = 3.77), with a maximum possible score of 100 (See Fig-
ure 9a). All the data net the normality assumption according to the
Shapiro-Wilk test (W = 0.965, 𝑝 = 0.860), and a paired samples t-test

was conducted to assess the significance of these changes, revealing
a statistically significant improvement in motion scores (t(5) = -2.16,
𝑝 < 0.05). Similarly, the Wilcoxon signed-rank test confirmed the
significance of the difference (𝑝 < 0.05). Furthermore, the effect size,
as measured by Cohen’s d (d = -0.880), indicates a large practical
impact of these modifications, demonstrating an improvement in
the 𝐹eq level and overall equability of choreography.

ChoreoCraft facilitated a quantitative analysis of choreography
under two distinct conditions: participants were exposed to either a
single factor representation or all three selected factors simultane-
ously. According to Table 5 (Q12) and (Q13), participants expressed
a preference for receiving individual factor feedback (𝜇=6.1, 𝜎=0.85)
over-viewing multiple factors at once (𝜇=4.75, 𝜎=1.29), noting “It is
hard to think what to focus on when there are too many factors on
my movement.” (P6). This result suggests that presenting factors
individually is more effective for users.

*

Before  
Feq Analysis

After  
Feq Analysis

77.5

75.0

82.5

80.0

87.5

85.0

92.5

90.0

90.0

S
co

re
 (%

)

a b
* *

40

50

45

55

65

60

S
co

re
 (%

)

Before Left 
Fsb Analysis

After Left 
Fsb Analysis

Before Right 
Fsb Analysis

After Right 
Fsb Analysis

Figure 9: (a) shows the results of 𝐹eq score before and after
analysis, pairs showed significance in t-test, (b) describes the
results of 𝐹sb score before and after analysis of each left and
right foot, pairs showed significance in t-test (* : 𝑝 < 0.05).

Regarding 𝐹sb, Participants (P1, P3, P8, and P10) commented “The
evaluated difference in energy between both feet was noticeable, which
dragged me to refer and modify the motion to equalize them.” The
quantitative rate showed that modified choreography did increase
the 𝐹sb. The average 𝐹sb factors for the left and right sides were
average of 47.96% and 52.27% for their initial trial and improved to
55.64% and 56.46% in the modified trial. The paired t-test results
showed t(7) = -2.54, 𝑝 < 0.05, indicating a meaningful improvement
in 𝐹sb factors after modification. The Wilcoxon signed-rank test
yielded W = 1.00, 𝑝 < 0.05, reinforcing this finding. The effect sizes,
Cohen’s d = -0.898 and a rank bi-serial correlation of -0.929, both
suggest a substantial reduction in the energy imbalance between
the feet, leading to more balanced and stable movements (See Figure
9b).

𝐹sj was the most utilized analysis factor where 85% (8/10) of the
participants referred to the analysis and modified the choreography.
Noting “Being left-handed, I tend to rely on the left side of my body.
The system accurately detects this, which encourages me to engage
other body segments.” Among the participants who adjusted their
movements based on the 𝐹sj feedback, an average of 2 non-salient
joints (𝜎 = 0.86) were activated. This corresponds to improvements
of about 10% for promoting joint activation of the 20 remaining
joints that had not been previously activated.
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6.3.4 Post Study on Peer-Reviewed Choreography Evaluation. We
conducted a post-study on the peer-review process to evaluate
choreographies created under three distinct conditions: baseline (us-
ing mirrors), utilizing the VR environment with choreography sug-
gestion (VR), and choreography revised after using the choreogra-
phy analysis system (Revised). Choreographer pairs with similar
experience levels were assigned to assess each other’s work, ensur-
ing consistent feedback. For instance, P2 and P10, both with seven
years of experience, were paired to evaluate the completeness and
creativity of each other’s choreographies. Participants evaluated
each choreography based on three key questions represented in
Table 6. We collected a total of 180 responses (10 participants × 6
choreography videos × 3 questions). Each participant rated four
choreography creation videos on a 10-point scale, assessing how
each choreography aligned with the posed questions. For tasks
where a large number of responses could not be generated com-
pared to the user evaluation, we adopted a 10-point scale to ensure
more definitive differentiation. This approach allowed us to aggre-
gate more conservative results, thereby enhancing reliability [23].

Table 6: Evaluation Questions for Post Study

Questions for Post Study

Q1. Please evaluate how well the choreography harmo-
nizes with the music.
Q2. Please assess how organically the movements within
the choreography are structured.
Q3. Please evaluate the creativity of the choreography.

The Friedman test was employed to determine significance across
the three conditions for each of the three questions. Although sig-
nificant results were not obtained for Q1 and Q3, Q2 showed some
statistical significance. For Q2, Nemenyi post-hoc tests were con-
ducted to explore differences between the videos, but no significant
pairwise differences were identified. Despite the lack of statisti-
cal significance, there were observable trends in the mean scores:
Q1 (Harmonization with music): Mirror (𝜇 = 7.75, 𝜎 = 1.51), VR
(𝜇 = 8.05, 𝜎 = 1.53), Revised (𝜇 = 8.15, 𝜎 = 1.42); Q2 (Organic move-
ment structure): Mirror (𝜇 = 7.55, 𝜎 = 1.60), VR (𝜇 = 8, 𝜎 = 1.58), Re-
vised (𝜇 = 8.05, 𝜎 = 1.66); Q3 (Creativity): Mirror (𝜇 = 7.7, 𝜎 = 1.24),
VR (𝜇 = 7.8, 𝜎 = 1.36), Revised (𝜇 = 8.05, 𝜎 = 1.20) (Figure 10).
These results suggest that choreographies created using the VR
environment, and especially those refined with the choreography
analysis system, exhibited slightly higher completeness and cre-
ativity compared to those created using mirrors alone. While these
findings were not statistically significant, the observed trends imply
that dancers accustomed to mirror-based choreography may pro-
duce higher-quality results when utilizing our system. The absence
of strong statistical significance in these results highlights the need
for further research. A larger sample size and more choreography
creations would likely provide a more robust assessment of the
system’s effectivness. Such extended studies could help to establish
stronger evidence for the positive impact of our system on the
choreographic creation process.

When considering the previous results, this system offers an
opportunity to create choreography with high efficiency while ad-
dressing the memory dependence of the traditional choreographic
process. This suggests that compared to the method of creating
with mirrors, it enables the production of choreography of compa-
rable or higher quality more efficiently without being constrained
by spatial or temporal limitations.

6.3.5 Assessing the Impact of Choreography Analysis Comparing to
Self-Reflection From Baseline Condition. To confirm if the effect in
Section 6.3.3 directly stems from the ChoreoCraft analysis system,
we conducted an additional study focusing solely on the analysis
component. We recruited 8 professional choreographers (6 females)
with varied levels of choreographic experience (5∼22 years, 𝜇 =
9.12, 𝜎 = 5.48). In contrast to Section 6, the additional study focused
exclusively on the analysis feature of the ChoreoCraft system.

Participants alternated between baseline and ChoreoCraft con-
ditions using counterbalanced sequences across trials to mitigate
the order effect. For a baseline, participants relied on traditional
methods, crafting choreography in front of a mirror and conducting
self-reflection using their own recordings. ChoreoCraft condition
adapted the same initial choreography crafted in the baseline condi-
tion but allowed participants to revise it using quantitative feedback
provided by the system. We conducted the Shapiro-Wilk Test and
confirmed that both baseline and ChoreoCraft conditions satisfy
the assumption of normality. For further analysis, we conducted
a paired t-test, and the results confirmed that ChoreoCraft signifi-
cantly outperformed the baseline condition across all metrics 𝐹eq,
𝐹sb. Represented in Figure 11, the improvement of 𝐹eq under Chore-
oCraft was substantially greater (𝜇 = 7.92%) compared to baseline (𝜇
= 3.06%), with a 𝑝 < 0.01. Similarly, left 𝐹sb showed a mean im-
provement of 5.49% (ChoreoCraft) versus 2.35% (Baseline), with a
𝑝 < 0.05. While the improvement in right 𝐹sb was not statistically
significant (𝑝 = 0.054), the trend still favored ChoreoCraft.

By employing a counterbalanced design where participants al-
ternated between baseline and ChoreoCraft conditions, we aimed
to mitigate potential sequence biases. This approach allowed us to
assess whether ChoreoCraft consistently facilitated better choreo-
graphic refinement and ensured that the observed improvements
were not merely the result of task repetition or familiarity. Through
conducting t-test, analysis of relative delta (Δrelative = ΔChoreoCraft−
Δbaseline) for counterbalanced groups (Group A: baseline→ Chore-
oCraft; Group B: ChoreoCraft→ baseline) revealed no significant
difference (𝑝 = 0.587). This finding confirms that ChoreoCraft’s
effectivness is independent of sequence effects and is directly at-
tributable to ChoreoCraft’s choreography analysis feedback.

7 Discussion
Addressing key considerations for improved VR experiences. A

significant challenge involved the fidelity of the avatar’s move-
ments, with participants noting discrepancies between their physi-
cal movements and the avatar’s rendering. This created a sense of
disconnection, particularly for detailed facial expressions or delicate
dance movements (body waves or isolation movements). Address-
ing these issues requires integrating advanced motion tracking
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Figure 10: Result of Post Study. Three graphs represent the result of Q1∼3 from Table 6.

Table 7: Demographic and Background Information of Participants for Additional User Study

ID Gender Dance Experiences Choreographic Experiences Main Genre
P1 F 5.5 years 5.5 years Girls Hip-Hop, Waacking
P2 F 25 years 10 years Korean Modern Dance
P3 F 10 years 7 years Waacking
P4 F 5 years 4 years Hip-Hop, Waacking
P5 M 13 years 13 years Poppin
P6 F 15 years 10 years Jazz, Korean Modern Dance
P7 F 22 years 20 years Modern Dance
P8 M 5 years 3.5 years Choreography
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Figure 11: Result of comparative study demonstrating ChoreoCraft’s effectiveness relative to the baseline condition. (a)
illustrates the percentage improvements across the conditions (baseline and ChoreoCraft) for metrics 𝐹eq, left and right 𝐹sb. (b)
refers the delta comparison between Group A (baseline→ ChoreoCraft) and Group B (ChoreoCraft→ baseline).

systems [54, 85] to improve the synchronization between physi-
cal and virtual motions, thereby enhancing user immersion. Addi-
tionally, multiple participants mentioned the physical burden and
constraints on dance motions such as moving hands close to the
head or rolling on the floorcaused by weight of the HMD and wired
connection. Recent advancements in the lightweight design of VR
HMDs [15, 49] can help prevent physical fatigue caused by the
weight of the device. While the current system utilizes wired con-
nections to employ real-time motion tracking, adopting a wireless
and real-time motion tracking method [21] enables more unre-
stricted dance movements.

Enhanced creative inspiration driven by diverse choreography anal-
ysis factors. The system exclusively provides an objective score or
visualization without additional prescribing steps of what to pro-
ceed to improve the score. The result of Q10 from Table 5 demon-
strates that encouraging choreographers to independently interpret
the evaluation stimulated their ability to refine their movements
with their own autonomous decisions. P8 from user study sup-
ports our hypothesis that “Encountering analyzed score makes me
reflect on my previous movements and encourages me to explore new
approaches.” However, some novice choreographers (<2 years of
experience) often struggled to make progress after interpreting the
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score. This suggests that ChoreoCraft further needs to consider de-
veloping an automated score system to provide adaptive guidance
considering the user’s expert knowledge.

Suggestion and future directions for representing choreography
analysis factors. From the results, we found out that providing indi-
vidual factor feedback one at a time is easier and more approachable
for users rather than providing multiple factors simultaneously.
Choreographers mentioned it was more clear and intuitive to in-
vestigate the movement when a sole factor was provided. There-
fore, we suggest providing a single analysis factor rather than a
combined presentation for future iterations. For future versions of
ChoreoCraft, we plan to allow high flexibility so users can select
their favored analysis factors to work with. Additionally, while
the current use of Azure Kinect for motion capture has proven
effective in quantifying macro-level dynamics and analyzing foot
stability through raw and filtered data, it has limitations. Specifi-
cally, the system limits to capture subtle movements. To address
these challenges, we aim to incorporate wearable sensors in future
versions of ChoreoCraft. This enhancement would enable a more
comprehensive analysis of muscle engagement and balance, pro-
viding choreographers with richer and more detailed feedback to
support their creative process.

Towards better understanding of choreography analysis system.
We found that additional practice sessions for understanding mo-
tion analysis scores were necessary. As the sessions progressed,
participants gained a better understanding of the numerical feed-
back and were able to refine their choreography details with more
creative and informed decisions. P5 from the additional user study
specifically noted that they initially relied on the instructor’s expla-
nations to understand the scoring metric. Then, they got used to the
score system and visual indicators to refine their movements over
time. This highlights that structured guidance and some practice
sessions would be required for the first time users to effectively
leverage choreography analysis system.

8 Conclusion
In this paper, we proposed ChoreoCraft, the first VR choreography
crafting supportive tool. Our results demonstrated that ChoreoCraft
helped overcome the creative plateau with the choreography sug-
gestion system and supported constructive feedback with choreog-
raphy analysis factors. To bring these forward, we incorporated a
novel dance similarity comparison method (DanceDTW) to suggest
motion aligned with the context. By offering kinematic feature-
based motion analysis, systematic feedback for the choreography
becomes possible. Throughout multiple studies with professional
choreographers, participants favored the aspect of an in situ inspi-
rational system with objective feedback availability. We believe that
all levels of choreographers, either novice or expert, would bene-
fit from using ChoreoCraft in various stages of the choreography
creation process. Based on continued advancement in motion gen-
eration and analysis technologies, we envision ChoreoCraft would
become a central creative support tool to further support chore-
ographers to nurture and shape the future of the choreography
creation process.
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A Algorithms

Algorithm 1: DanceDTW Algorithm

Input: 𝑋,𝑌 ∈ R𝐹×( 𝐽 ×7) : Motion sequences (e.g., 𝑋 is input
motion sequence and 𝑌 is reference motion
sequence), where:

• 𝐹 : Number of frames in the sequence (temporal dimension)
• 𝐽 : Number of joints in the motion (spatial dimension,
𝐽 = 24)
• 7: Positional (𝑃𝑥 , 𝑃𝑦, 𝑃𝑧 ) and rotational (𝑅𝑤 , 𝑅𝑥 , 𝑅𝑦, 𝑅𝑧 ) data
for each joint

Parameters: 𝜆𝑓 , 𝜆𝑔, 𝜇𝑝 , 𝜇𝑟
Output: 𝐶total: Final similarity cost between 𝑋 and 𝑌

(lower values indicate higher similarity)
Function DanceDTW(𝑋,𝑌, 𝜆𝑓 , 𝜆𝑔, 𝜇𝑝 , 𝜇𝑟):

Compute average motion data: 𝑍 = 1
2 (𝑋 + 𝑌 )

Adjust offset: 𝑓 (𝑋 ) ← 𝑋 − 𝑍 , 𝑓 (𝑌 ) ← 𝑌 − 𝑍
Normalize data: 𝑔(𝑋 ) ← 𝑋−min(𝑋 )

max(𝑋 )−min(𝑋 ) ,

𝑔(𝑌 ) ← 𝑌−min(𝑌 )
max(𝑌 )−min(𝑌 )

for each joint 𝑗 = 1 to 𝐽 do
Compute DTW costs for position:
𝑐𝑝𝑓 ,𝑗

= 𝜆𝑓 · DTW𝐼 (𝑓 (𝑋𝑝,𝑗 ), 𝑓 (𝑌𝑝,𝑗 ))
𝑐𝑝𝑔,𝑗 = 𝜆𝑔 · DTW𝐼 (𝑔(𝑋𝑝,𝑗 ), 𝑔(𝑌𝑝,𝑗 ))
Compute DTW costs for rotation:
𝑐𝑟 𝑓 ,𝑗 = 𝜆𝑓 · DTW𝐼 (𝑓 (𝑋𝑟, 𝑗 ), 𝑓 (𝑌𝑟, 𝑗 ))
𝑐𝑟𝑔,𝑗 = 𝜆𝑔 · DTW𝐼 (𝑔(𝑋𝑟,𝑗 ), 𝑔(𝑌𝑟,𝑗 ))

Gather all position costs:
𝑐𝑝,all = {𝑐𝑝𝑓 ,𝑗

, 𝑐𝑝𝑔,𝑗 | 𝑗 = 1, . . . , 𝐽 , . . . , 𝐽 × 3}
for each 𝑐𝑝,𝑗 ∈ 𝑐𝑝,all do

Normalize position cost:
𝑐𝑝,norm, 𝑗 =

𝑐𝑝,𝑗−min(𝑐𝑝,all )
max(𝑐𝑝,all )−min(𝑐𝑝,all )

Compute total costs:
𝐶𝑝 =

∑2× 𝐽 ×3
𝑗=1 𝑐𝑝,norm, 𝑗 ,𝐶𝑟 =

∑𝐽 ×4
𝑗=1 (𝑐𝑟 𝑓 ,𝑗 + 𝑐𝑟𝑔,𝑗 )

𝐶total = 𝜇𝑝𝐶𝑝 + 𝜇𝑟𝐶𝑟
return 𝐶total

https://www.dancemagazine.com/choreography-feedback/#gsc.tab=0
https://www.dancemagazine.com/choreography-feedback/#gsc.tab=0
https://www.xsens.com
https://www.xsens.com
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Algorithm 2: Parameter Fitting for DanceDTW using
Bayesian Optimization
Input: TrainSet: 90 pairs of {reference, student} motion

sequences
TestSet: 9 pairs of {reference, student} motion sequences
Output: Optimal parameters: 𝜆𝑓 , 𝜆𝑔, 𝜇𝑝 , 𝜇𝑟 and Test

accuracy
Function OptimizeParameters(TrainSet, TestSet):

Initialize Bayesian Optimization process
for each evaluation (50 iterations) do

Sample 𝜆𝑓 , 𝜆𝑔, 𝜇𝑝 , 𝜇𝑟 using Bayesian Optimization
for each pair (𝑋ref, 𝑋stu) in TrainSet do

𝐶total ← DanceDTW (𝑋ref, 𝑋stu, 𝜆𝑓 , 𝜆𝑔, 𝜇𝑝 , 𝜇𝑟 )
Compute classification accuracy based on 𝐶total

Calculate average training accuracy
Update Bayesian Optimization model

Select best performing 𝜆𝑓 , 𝜆𝑔, 𝜇𝑝 , 𝜇𝑟
for each pair (𝑋ref, 𝑋stu) in TestSet do

𝐶total ← DanceDTW (𝑋ref, 𝑋stu, 𝜆𝑓 , 𝜆𝑔, 𝜇𝑝 , 𝜇𝑟 )
Compute classification accuracy based on 𝐶total

Calculate final test accuracy
return Best 𝜆𝑓 , 𝜆𝑔, 𝜇𝑝 , 𝜇𝑟 , Train accuracy, Test accuracy

Run OptimizeParameters(TrainSet, TestSet) to find
optimal parameters
return Optimal 𝜆𝑓 , 𝜆𝑔, 𝜇𝑝 , 𝜇𝑟 , Train accuracy, Test accuracy

B Iterative Closest Point Algorithm for
Comparison with SMPL and Kinect motion
data

The input consists of two sets of motion data, Pkinect and Psmpl,
each representing the 3D positions of common joints. First, the
motion data is loaded from CSV files, where each joint’s position
and rotation are parsed into a structured dictionary format. The
common joints between the two datasets are identified to ensure
consistent alignment. For ICP, the first step involves calculating
the centroids ckinect = 1

𝑛

∑𝑛
𝑖=1 P

𝑖
kinect and csmpl = 1

𝑛

∑𝑛
𝑖=1 P

𝑖
smpl

of the corresponding joints. Next, the datasets are centered by
subtracting the centroids from each point. The optimal rotation
matrix R is computed using singular value decomposition (SVD)
from the covariance matrix H =

∑𝑛
𝑖=1 (P𝑖kinect − ckinect) (P𝑖smpl −

csmpl)𝑇 . Performing SVD on H gives H = USV𝑇 , and the optimal
rotation matrix is then obtained as R = VU𝑇 . If the determinant
of R is negative, the reflection is corrected by flipping the sign of
the last column of V. The translation vector is computed as t =
csmpl−Rckinect. The output of the ICP process is the transformation
consisting of the optimal rotation matrix R and the translation
vector t, which is applied to all frames of the Kinect dataset to align
it with the SMPL dataset. Thus, the transformed Kinect data for
each frame is computed as Ptransformed

kinect = RPkinect + t, ensuring that
the Kinect and SMPL data are aligned for further analysis.

Algorithm 3: ICP Alignment for SMPL and Kinect Data
Input: Pkinect, Psmpl: Motion data from Kinect and SMPL

systems
Each contains the 3D positions of common joints across
frames.
Output: R, t: Optimal rotation matrix and translation

vector for alignment
Ptransformed
kinect : Transformed Kinect data aligned with SMPL

data
Function ICPAlignment(Pkinect, Psmpl):

Compute centroids of common joints:
ckinect = 1

𝑛

∑𝑛
𝑖=1 P

𝑖
kinect,

csmpl =
1
𝑛

∑𝑛
𝑖=1 P

𝑖
smpl

Center the data by subtracting the centroids:
Pcenteredkinect = Pkinect − ckinect,
Pcenteredsmpl = Psmpl − csmpl
Compute covariance matrix H:
H =

∑𝑛
𝑖=1 P

centered,𝑖
kinect Pcentered,𝑖

𝑇

smpl
Perform SVD on H:
H = USV𝑇

Compute optimal rotation matrix:
R = VU𝑇

Check for reflection and adjust if necessary:
if det(R) < 0 then

Flip sign of last column of V: V−1 ← −V−1
Recompute R = VU𝑇

Compute translation vector:
t = csmpl − Rckinect
Apply transformation to all frames of Kinect data:
Ptransformed
kinect = RPkinect + t

return R, t, Ptransformed
kinect

C Explanation of Notched Boxplot

Figure 12: Visual Explanation of Notched Boxplot. This figure
was represented with reference to [58]
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